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ABSTRACT

The equation of conservation of mass and momentum for two-phase flows

are derived by applying a generic averaging process. The properties of this

averaging process are discussed. Constitutive equations are proposed for the

interfacial force. In addition, simple assumptions are made for the Reynolds

stresses and the fluid viscosity. These assumptions are examined for transition

layers.

Acesmion For

NTIS GRA&I

DTIC TAB

AMS (MOS) Subject Classification: 76T05 Uuannounced
Justification

Key Words: two-phase flows, transition layers, shocks, modeling By

Work Unit Number 2 - Physical Mathematics Distribution/
Availability CodQ2

IAvall and/c.r

D ist speoial

00

*

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
NY 12181

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

-~~~~~~ .,,,. .. ... . .. . .. .. ...

-5I



CONT~INUUM MO0DELING OF TWO-PHASE FLOWS

Donald A. Drev*

Introduction

The flow of two materials, one dispersed throughout the other, has

received much attention in recent times. Unfortunately, at this time, there

seems to be no set of equations which is regarded as fundamental, from which

other models can be derived as approximations. (Consider the analogy with

fluid mechanics, where the incompressible, inviscid equations are thought to

be valid approximations outside of shear layers and boundary layers, when

thermal and sonic effects are unimportant.)

Many researchers derive equations of motion by applying an averaging

process to the microscopic-equations of motion. The choice of averaging

process is dictated by the taste of the researcher as well as the particular

problem studied. In this paper, we give a derivation of the averaged

equations by applying a generic average. The relation of the generic average

to time- and space-averaging is discussed.

once believable equations of motions have been formulated, it is natural

to study their predictions in relatively simple flow situations. Often the

constitutive assumptions used in the model are derived and/or tested on

uniform flow situations. We give a discussion of transition layers in two-

phase flows. A transition layer is a thin region where the concentration of

one material changes rapidly in space. An example is the "interface" between

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
NY 12181.
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a carbonated liquid and its foamy "heado. An adequate description of these

transitions provides a harsh test of the constitutive assumptions used in the

model.

EQUATIONS OF MOTION

Each material is assumed to be a continuum, governed by the partial

differential equations of continuum mechanics. The materials are separated by

an interface, which is a surface. At the interface, jump conditions express

the conditions of conservation of mass and momemtum.

The equations of motion for each phase are (Truesdell and Toupin 1960)

(1) conservation of mass

2- + Vopv- 0 (1)

(2) conservation of linear momentum

+ VoP,,M VOT + p (2)at
valid in the interior of each phase. Here p denotes the density, v the

velocity, I the stress tensor, and f the body force density. Conservation

of angular momentum becomes 7 - 2t, where t denotes the transposed. At

the interface, the jump conditions are

(1) jump condition for mass

[P(v- vi ) on ] - 0 (3)

(2) jump condition for momentum

PV(v- vi ) on - wo] - 0. (4)

Here [ ] denotes the jump across the interface, Vi is the velocity of the

interface, and a is the unit normal (Aria 1962). We shall assume that a

points out of phase k, and that the Jump between f in phase k and f in

A kiphase A defined by [f) - f - f , where a superscript

k denotes the limiting value from the phase k side. As a sign convention
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for the curvature, we assume that K is positive (concave) toward -a. The

mass of the interface and surface stresses have been neglected. We do not

discuss any thermodynamic relations in this paper.

Constitutive equations must be supplied to describe the behavior of each

material involved. For example, if one material is an incompressible liquid,

then specifying the value of p, and assuming 'N - -pZ + a( 9, + (9,)t )

determines the nature of the behavior of the fluid in that phase. Similar

considerations are possible for solid particles or a gas. The resulting

differential equations, along with the jump conditions, provide a fundamental

description of the detailed or exact flow.

Usually, however, the details of the flow are not required. For most

purposes of equipment or process design, averaged, or macroscopic flow

information is sufficient. Fluctuations, or details in the flow must be

resolved only to the extent that they affect the mean flow (like the Reynolds

stresses affect the mean flow in a turbulent flow).

Averaging

In order to obtain equations which do not contain the details of the

flow, it has become customary to apply some sort of averaging process. we

present a generic averaging method, and its results.

Let < > denote an averaging process so that if f(x,t) is an exact

microscopic field, then <f)(x,t) is the corresponding averaged field.

An averaging process assigns average values to certain variables. The

F ensemble, or set of possible outcomes, can be taken to be the possible flows

ina some apparatus where the initial and boundary conditions which are

prescribed are equivalent in some sense. For example, for spherical

particles, it may be necessary to give the statistical distribution of the

positions and velocities of the centers of the particles at time t 0 such

-3-



that the average number density and average particle velocity is the same for

all equivalent flows. We shall asue that there is some ensemble Q, vith

some appropriate weighting p(*)dw so that the average of f is given by

<f> (ut) "- f(x,t gw dw

Two cases can be discussed. If the flow in nearly steady, so that a time

translation T makes no essential difference in the ensemble, it may be

enough to consider the subset of the entire ensemble which consists of

translations in time of amount T. we assign a weight p(T) to the

likelihood of the flow whos outcome at time t is f(x,t-T), where

f(xt) is the outcome at time t in some flow. The average of f is then

taken to be

<f)t(Zt) - (Z,t- T) U(T)dT

This is classical time averagiu; it is often used with

I - if 0 4 ?T T

0 otherwise ,

although other averages are possible.

If there are no boundaries in the flow (that is, boundary effects are

unimportant), then small spatial translations should make no difference in the

ensemble. In analogy to the above, the average

<f>5 (Zt) - f 3 f(x's,t)P(Ms)ds

can be defined. This is the classical space averageg it is often used with

if -eV
a(s)"

0 otherwise
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where V is some volume (for example, a sphere). Again, other averages are

possible.

Thus, in some sense, ensemble averaging contains space and time averages

as special cases. The averaging process is assumed to satisfy

<f+g) - <f + <0 (5)

<<f>g> - <f><g> (6)

<c - c (7)

of a f

< - <f> (9)

* "The first three of these relations are called Reynolds rules, the fourth

is called Leibnitz' rule, and the fifth is called Gauss' rule.

In order to apply the average to the equations of motion for each phase,

we introduce the phase function

Xk(zt) which is defined to be

I1 if x is in phase k at time t
xk(X~t) - (10)

0 otherwise .

We shall deal with Xk as a generalized function, in particular in regard to

differentiating it. Recall that a derivative of a generalized function can be

defined in terms of a set of "test functions* #, which are "sufficiently

smooth" and have compact support. Then S-- and are defined by

3Xki
fR3XR (jt) *(z,t)dadt-

- - J (3 Xklx,t) f (x,t)dudt (11)
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3Xk1R3 xR (x,t) *(z,t)d dt -

- -[ X(x~) (z, t) dmdt •(12)fX R± RX Xt a

It can be shown that

a xk

at+

in the sense of generalized functions.

If f is smooth except at S, then fVXk  is defined via

f R3 Rf VXk #dxdt~ t fS Sk +ddt (14)
RXR

where nk  is the unit normal exterior to phase k, and fk denotes the

limiting value of f on the phase-k side of S.

It is also clear that N is zero, except at the interface. Equation

(14) describes the behavior of VXk at the interface. Note that it behaves

as a "delta-function", picking out the interface S, and has the direction of

the normal interior to phase k.

Averaged Equations

In order to derive averaged equations for the motion of each phase, we

multiply the equation of conservation of mass

valid in phase k (1) by Xk and average. Noting that

ie ax P P Lk L XP +(15)'XIc at atk a at k Pi ON

and

Xk V*PV V.XkPV - Pw*VXk ,(6

we have
ak
at <Xkp) + e'Ap>- <[(vi)) ~k'*(7

Similar considerations for the momentum equations yield

a
ir: <XkPY> + Y*CX.kPY0 - VOXET> + Icf

(18)
k

+<. PV(v lw,) -T] .V >.

-6-



The terms

nd<[P(-.V)k. Y = rk  (19)

and

< Pv(v-vi) - k (20)

are the interfacial source terms. As noted, Wk picks out the interface,

and causes discontinuous quantities multiplying it to be evalued on the phase-

k side of the interface.

The jump conditions come from equations (3) and (4). We have

2 k -2 (21)

kI <'(EV-vi)l *VxY - I r3 k 0 21

2 . k. . 0 (22)

k-I

Applying a more specific averaging process (time averaging, for example)

requires a different set of manipulations regarding the interfacial source

terms (Anderson S Jackson 1967, Drew 1971, Ishii 1975, Delhaye and Achard

1976). Almost all of the derivations for specific averaging processes seem to

be more complicated than the abovel however, the trade-off for the simple

derivation is that all manipulations now involve generalized functions.

The volumetric concentration (or volume fraction, or relative residence

time) of phase k is defined by

- <Xk> (23)

We note that

-<-;:s> (24)

and

V - *~( 25)

[ -7-



There are two types of averaged variables which are useful in two-phase

mechanics, namely the phasic, or Xk-weighted average, and the mass-weighted

average. Which is appropriate is suggested by the appearance of the quantity

in the equation of motion. The phasic average of the variable # is defined

by

- Xk*/% (26)

and the mass weighted average of the variable I'is defined by

lic -(27)

It is convenient to write the stresses k in terms of pressures plus

extra stresses. Thus,

Yk - -k + *(28)

It is expected that readers familiar with fluid dynamical concepts are

familiar with the concept of pressure in fluids) in this case, Pk can be

thought of as the average of the microscopic pressure. If one of the phases

consists of solid particles, the concept is less familiar. In this case, the

microscopic stress (involving small elastic deformations, for example) is

thought of being made up of a spherical part (actinj equally in all

directions) plus an extra stress. The spherical part, when averaged, yields

the pressure pk in equation (28).

It has further become customary to separte various parts of the

interfacial momentum transfer term. This is done by defining the interfacial

velocity of the kth phase by

rkVk pvV-V)k , (29)

and the interfacial pressure on the kth phase by

Pk,i7k91 2 _ <pk VXk ) . . (30)

Equation (30) is the dot product of V% of the *standard" definition (Iohii

1975) of the interfacial pressure. The standard definition uses three

-8-
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equations to define one scalar quantity, and cannot be a generally valid

definition. Here the remaining part of the contribution of the pressure at

the interface is lumped with the viscous stress contribution at the interface,

and is treated through the use of a constitutive equation. Thus, we write

" - rv - p Vok + uL , (31)
kc k,i k,ix i

where d k . is referred to as the interfacial force

density, although it does not contain the effect of the average force on the

interface due to the average interfacial pressure. The term -PkiVa., which

does contain the force due to the average interfacial pressure, is sometimes

referred to as the bouyant force. The reason for this terminology is, of

course, that the buoyant force on an object is due to the distribution of the

pressure of the surrounding fluid on its boundary.

With equations (23) and (26) - (31), the equations of motion (17) and

(18) become

3"k Ok*Vakk- (2

-- ~- + V~cm.t r (323t k
atCkP Vk 'lVk + x Vic W

+ r v + (p Pk)Vqk (33)kc k~i k,i

The jump conditions (21) and (22) are

2
1 r - 0 (34)

k-Ik

2 
AdI tr v + pivec +~~- 0 (35)

kIk k,i i
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Adequate models for compressibility and phase change require

consideration of thermodynamic processes. These are beyond the scope of this

papery therefore we shall restrict our attention to incompressible materials

where no phase change occurs. Thus we assume that

Pk constant (36)

and

rk - o. (37)

In order to simplify the notation, we shall drop all symbols denoting

averaging.

CONSTITUTIVE EQUATIONS

In order to have a useable model, relations must be given which specify

the stresses (T + a}, the interfacial force density d and the pressure

differences pk - pki' consistent with the equations of motion and the jump

conditions.

The fundamental process consists of proposing forms for the necessary

terms within the framework of the principles of constitutive equations,

finding solutions of thet resulting equations, and verifying against

experiments. The ideal end result of the process is a set of equations which

could be used to predict the behavior of the two-phase flow, for example with

a computer code. With the equations should come a set of conditions for the

validity of the values of the constants and other" functions used in the

constitutive equations.

The stresses + the interfacial force density

and the pressure differences pk - pk,i are assumed to be functions of

ak/1t, V%, vk' Vwk, k/t, o. , where ... represents the material
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properties, such as the viscosities and densities of the two materials, and

other geometric parameters such as the average particle size, or the

interfacial area density.

For concreteness, we shall refer to phase one as the particulate, or

dispersed phase and include in that description solid particles, droplets, or

bubbles. Phase two is then the continuous, or carrier phase, and can be

liquid or gas. We shall denote

a M (38)

so that

l-C= - .2 (39)

It is evident that both a and 1-a need not be included as independent

variables in forming constitutive equations.

Drew and Lahey (1979) consider the general process of constructing

constitutive equations. The simplest reasonable set of assumptions leads to

models for the motions of the two materials which may be ill-posed. Drew

(1982) gives a review of the state of affairs.

Essentially, the problem and the reason for its importance can be

sumarized in the following manner. The simplest model assumes that the

interaction forces are due to viscous drag, and that pressure forces

equilibrate across particles instantaneously. Thus,

d d 3 CD (40)
K 2 = s a.1 - I v1-v 2 1(v 2 -v 1 )

and

Pl ' P2 = P,i ' P2 ,i - P " (41)

If the stresses T + are ignored, the model has complex

characteristics, and hence is ill-posed. See Ramshaw and Trapp (1978). The

ill-posed nature of the model leads (theoretically) to solutions which grow

rapidly on a small length scale. This leads some to conjecture that the model

-11-
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is trying to resolve events on the microscale. The application of an average,

however, in supposed to lose details of the flow; indeed, both (40) and (41)

specifically ignore flow details on the scale of the particle size and

smaller. The obvious conclusion is that equations (32 - 37), with assumptions

(40), (41) and neglect of viscous forces lack some mechanism vhich is

important on the particle scale. it is noteworthy that no difficulties arise

in numerical simulations with the ill-posed system. The reason for this is

that the instability inherent in the ill-posed system appears on a scale

comparable to the particle radius to a power which depends on the exact form

of the drag law used for CV. Thus, if the mesh is not refined to the

particle size, no instabilities will be seen. This suggests that computation

with the ill-posed system with a reasonable mesh will most likely give good

results.

The above argument indicates some difficulties for stability

calculations. When is an instability not an instability? Presumably it is *
unobserved if its wavelength is too small. It would be satisfying to find the

missing effect in the model and show how the model reduces to the isobaric,

inviscid model mentioned above. There is a long list of candidates for the

forgotten mechanism (Drew 1982) but no clear winner has emerged. The sensible

approach seems to be to examine various models on a mesoscale, that is, on a

scale which is small compared to the usual experimental verification flows

(such as laminar settling in a still fluid), but large compared to the

particle scale. These mesoscale calculations may indicate what sorts of terms

are needed to give a valid description on a smaller scale.

There is another reason for seeking the more complete model. If the ill-

posed model is the limit of some more complete model with some effects

neglected, if the neglect can be done by a set of formal manipulations on the



orte complete model, the result may indicate whether some well-posed model

might do as well as the above ill-posed model. Moreover, it is always of

interest to find reduced models which contain the same features as the

original model.

We shall examine the effects of the viscous and Reynolds stresses on a

mesoscale motion, namely transition layers in vertical flow. If the flow is

vertical, and we denote the vertical velocities by

w- u(s,t)k (42)

v2 - v(z,t)k , (43)

we have

aa 8@i 44+ L- - 0 (44)

(U + (1-)v - J(t) (45)

(46)

apq

, 4-G~fav abuv -- 1 -q +
2 - + vdu-sv) - (1-+P 2 g 

(47)

+ (1-a) 02 + 11-Q1 U -•

The function J(t) is the volumetric flux, and will be taken to be

constant. The stress models are

T 0 (48)

Ar J" (49)
-t2 a

to represent the viscosity of the fluid. The particles are assumed to be

inviscid. in addition, the Reynolds stress terms ok will be taken to be

constants.
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For problems of sedimentation and transitions in fluidized beds, we shall

assume that J(t) - constant for t > 0.

Kinematic Waves

If we ignore inertia in equations (46) and (47) and set 01 - 2 = 0 and

- 0, we have a model which reduces to a one-dimensional scalar

conservation law. If the pressure is eliminated from the resulting momentum

equations, we have

v-u - b " (50)

Using (45) gives

u- j - (1-a)(v-u)

Hence

a( 1-a)2p pl-P2) g
au M, oJ - b- g f(a) * (51)

Equation (44) with oa given by (51) is a scalar conservation law for

a(z,t).

Solutions can be found by the method of characteristics; on the

characteristics,

da.7-" 0 (52)
dt

dt - f'(a) - constant *(53)

As long as no discontinuities occur, a is constant on characteristics.

If discontinuities occur, they must propagate at a speed given by

[S . (54)

where [#] denotes the jump in the quantity # across the discontinuity. A

discontinuity, or shock will persist if characteristics tend to come into the

shock. If character- istics diverge from the shock, then it will smooth

out. In Figure 1, a shock from (af(a.)) to (a ,f(a )) is not stable if

-14-
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the region where a occurs is above the shock. This is because the

ch-racteristics at a+ are moving faster than the shock. Note that contact

discontinuities are possible with this model.

f(a)

Nw-_a a1+ a

Figure I

For fluidization, j ) 0. Zn order to describe a transition in

fluidization, we assume that the bed is fluidised at t - 0- with a

concentratlei. Q+ which corresponds to some value of the volumetric flow

rate j+. At time t = 0, the volumetric flow rate is instantaneously

changed to J. The flow-concentration diagra is given in Figure 1. The

simplest situation is depicted, consisting of an upward traveling bottom shock

(transition) and an upward traveling top shock.

Figure 2 shows the consentration at some time tj, and Figure 3 shows

the solution in various regions of the t - z plane.

-15-



aa4 a

t=O+ tt,

Figure 2

Figure 3

Diffusional Reularization

one way to understand shocks is to include in the model some means of

smearing them out. This can be done in the present problem by including the

diffusion terms.- We continue to ignore inertia and Viscosity. Repeating the

procedure outlined above yields

CM f f(a)- D -B, 55

where



(t-a)(1-a)0 1 + a02] (56)

b

The equation for a is a nonlinear diffusion equation

*ae . (57)

in order to examine the transition, we let

a - az - st) (58)

where a is the speed of propagation of the traveling wave representing the

transition. We obtain

d d d(

Integrating from -- to F gives

f(a) If(c) + s~a- a)] - D- (60)

The quantity in the bracket is the equation for the chord (in Figure 1 for

example), and f(a) is the flow-concentration curve there. If the curve lies

above the chord, then dtVdg is positive. If the curve lies below the chord,

then dCVdC is negative. The transitions go from a to a+ where a+ is

the value of a where the left hand side of (60) is zero, that is, where the

curve and chord intersect. If D is small, the transition region is thin.

The diffusional regularization corresponds to the results obtained from shock

stability considerations.

Inclusion of the inertia of both phases complicates the situation

inmensely. It can be shown that the thing which corresponds to the shock in

the kinematic wave model is not a shock in the model which includes inertia.

In order to study the transition, assume that a, u, v and p are

functions of 4 - z - at, where s is the speed of the transition wave, and

a+a.,u+u.,v+v, as C a+0,u +,v+v+ as C -.

as, ut and v are related to a by (45) and (54). Substituting in the

equations (44 - 47) and eliminating p, u, and v gives

-17-
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(1-a2)(v-s) dO +. - (1-a) 2

(61)

+ (a)a' + g(a) -0

where

2 2
a P1 (U -s)

B~)-01 + 0 1-a 2
a()=a 2 _  - a 2"

a 0 2(1_a )2 (v -a)2  (62a)

and
g(a) [f- -- -~e~ ] 6bb

(1-a) 2 If( - a u-( -a(2

Note that if M = 0, and we wish to retain the picture given by the

characteristics of the scalar conservation law, we can do so only if

;(a) > 0 (63)

for a between a and a . In a sense, equation (63) suggests that inertia

will be unimportant for transitions if diffusion is sufficiently large

sufficiently large means so that equation (63) is satisfied.

Note from equation (61) with u - 0 and 01 = 02 - 0, that inertia

without diffusion gives results opposite to the results from the scalar

conservation law.

The Effect of Viscosity

dw
In equation (61), let a' - w(a). Then or - w ., and equation (61)

becomes

(1-a)(v-s) 2 d(w2/2) + (1-a)(v-s)
1.a) (a1-a)3

(64)

+ B(a)w + g(G) - 0

Let us now define G(a) by

G'(a) - g(a) (65)

-18-



I.

and

G(s_) -0 if g(a) > 0 for a a< < a
- + (66)

G(*+) - 0 if g(a) < 0 for a_ < a< t+

(We also assume that (1-a)(v-s) > 0.) equation (64) becomes

d 1 w 2

do 2 + G() - -(G)w (67)

2
The curves H(a,w) - + G(a) are closed curves centered at a if

if g(a) > 0, and a+ if g(a) < 0. See Figure 4. On a trajectory leaving

a+ (if g(a) > 0) or a (if g(a) < 0), the function a(&) satisfies

d H(a,w) - -0(a)w2  
(68)

which is negative if 0(a) > 0. Thus H decreases on a trajectory, giving

the transition from a to a (if g(a) > 0) or from a to a+ (if

g(a) < 0). Since

g(a) -- b (f(a)-au - s(-a)) ,

a(1-a)2,iA(1-_)(v-s)---

we see that if the curve f is above the chord, s(a-a ) + a u-, then

g(a) < 0, and this type of transition can occur from a to %. On the

other hand, if the curve f(m) is below the chord s(a-a_) + a u-, then

g(a) > 0, and the transition can occur from a to a . This again agrees

with the picture given by the characteristics for the one-dimensional

conservation law.

Conclusion

There are two distinct features of two-phase flow modeling addressed in

this paper, namely the averaging process, and transition layers.

The generic averaging process includes certain classical averages as

special cases and gives the same results as these classical 
averages when

applied to the equations of motion.
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W

H=G(a+)

Figure 4

Transition layers are often observed in two-phase flows, and various

models for them have been used. The simplest model, that of the kinematic

wave, describes the situation when inertia, viscosity and diffusivity are

negligible, but diffusivity dominates over inertia.
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